Extensions 1→N→G→Q→1 with N=C24 and Q=C22

Direct product G=NxQ with N=C24 and Q=C22
dρLabelID
C2664C2^664,267

Semidirect products G=N:Q with N=C24 and Q=C22
extensionφ:Q→Aut NdρLabelID
C24:1C22 = C2wrC22φ: C22/C1C22 ⊆ Aut C2484+C2^4:1C2^264,138
C24:2C22 = C23:3D4φ: C22/C1C22 ⊆ Aut C2416C2^4:2C2^264,215
C24:3C22 = D42φ: C22/C1C22 ⊆ Aut C2416C2^4:3C2^264,226
C24:4C22 = C24:C22φ: C22/C1C22 ⊆ Aut C2416C2^4:4C2^264,242
C24:5C22 = C2x2+ 1+4φ: C22/C1C22 ⊆ Aut C2416C2^4:5C2^264,264
C24:6C22 = C2xC22wrC2φ: C22/C2C2 ⊆ Aut C2416C2^4:6C2^264,202
C24:7C22 = D4xC23φ: C22/C2C2 ⊆ Aut C2432C2^4:7C2^264,261

Non-split extensions G=N.Q with N=C24 and Q=C22
extensionφ:Q→Aut NdρLabelID
C24.1C22 = C23.9D4φ: C22/C1C22 ⊆ Aut C2416C2^4.1C2^264,23
C24.2C22 = C24.C22φ: C22/C1C22 ⊆ Aut C2432C2^4.2C2^264,69
C24.3C22 = C24.3C22φ: C22/C1C22 ⊆ Aut C2432C2^4.3C2^264,71
C24.4C22 = C23:2D4φ: C22/C1C22 ⊆ Aut C2432C2^4.4C2^264,73
C24.5C22 = C23:Q8φ: C22/C1C22 ⊆ Aut C2432C2^4.5C2^264,74
C24.6C22 = C23.10D4φ: C22/C1C22 ⊆ Aut C2432C2^4.6C2^264,75
C24.7C22 = C23.Q8φ: C22/C1C22 ⊆ Aut C2432C2^4.7C2^264,77
C24.8C22 = C23.11D4φ: C22/C1C22 ⊆ Aut C2432C2^4.8C2^264,78
C24.9C22 = C23.4Q8φ: C22/C1C22 ⊆ Aut C2432C2^4.9C2^264,80
C24.10C22 = C2xC23:C4φ: C22/C1C22 ⊆ Aut C2416C2^4.10C2^264,90
C24.11C22 = C22.11C24φ: C22/C1C22 ⊆ Aut C2416C2^4.11C2^264,199
C24.12C22 = C2xC4:D4φ: C22/C1C22 ⊆ Aut C2432C2^4.12C2^264,203
C24.13C22 = C2xC4.4D4φ: C22/C1C22 ⊆ Aut C2432C2^4.13C2^264,207
C24.14C22 = C2xC42:2C2φ: C22/C1C22 ⊆ Aut C2432C2^4.14C2^264,209
C24.15C22 = C2xC4:1D4φ: C22/C1C22 ⊆ Aut C2432C2^4.15C2^264,211
C24.16C22 = C22.29C24φ: C22/C1C22 ⊆ Aut C2416C2^4.16C2^264,216
C24.17C22 = C22.32C24φ: C22/C1C22 ⊆ Aut C2416C2^4.17C2^264,219
C24.18C22 = C23:2Q8φ: C22/C1C22 ⊆ Aut C2416C2^4.18C2^264,224
C24.19C22 = D4:5D4φ: C22/C1C22 ⊆ Aut C2416C2^4.19C2^264,227
C24.20C22 = C22.45C24φ: C22/C1C22 ⊆ Aut C2416C2^4.20C2^264,232
C24.21C22 = C22.54C24φ: C22/C1C22 ⊆ Aut C2416C2^4.21C2^264,241
C24.22C22 = C4xC22:C4φ: C22/C2C2 ⊆ Aut C2432C2^4.22C2^264,58
C24.23C22 = C24:3C4φ: C22/C2C2 ⊆ Aut C2416C2^4.23C2^264,60
C24.24C22 = C23.7Q8φ: C22/C2C2 ⊆ Aut C2432C2^4.24C2^264,61
C24.25C22 = C23.34D4φ: C22/C2C2 ⊆ Aut C2432C2^4.25C2^264,62
C24.26C22 = C23.8Q8φ: C22/C2C2 ⊆ Aut C2432C2^4.26C2^264,66
C24.27C22 = C23.23D4φ: C22/C2C2 ⊆ Aut C2432C2^4.27C2^264,67
C24.28C22 = C2xC42:C2φ: C22/C2C2 ⊆ Aut C2432C2^4.28C2^264,195
C24.29C22 = C2xC4xD4φ: C22/C2C2 ⊆ Aut C2432C2^4.29C2^264,196
C24.30C22 = C2xC22:Q8φ: C22/C2C2 ⊆ Aut C2432C2^4.30C2^264,204
C24.31C22 = C2xC22.D4φ: C22/C2C2 ⊆ Aut C2432C2^4.31C2^264,205
C24.32C22 = C22.19C24φ: C22/C2C2 ⊆ Aut C2416C2^4.32C2^264,206
C24.33C22 = C22xC4oD4φ: C22/C2C2 ⊆ Aut C2432C2^4.33C2^264,263
C24.34C22 = C2xC2.C42central extension (φ=1)64C2^4.34C2^264,56
C24.35C22 = C22xC22:C4central extension (φ=1)32C2^4.35C2^264,193
C24.36C22 = C22xC4:C4central extension (φ=1)64C2^4.36C2^264,194
C24.37C22 = Q8xC23central extension (φ=1)64C2^4.37C2^264,262

׿
x
:
Z
F
o
wr
Q
<